首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21262篇
  免费   2073篇
  国内免费   3368篇
  2023年   343篇
  2022年   392篇
  2021年   554篇
  2020年   743篇
  2019年   837篇
  2018年   846篇
  2017年   812篇
  2016年   848篇
  2015年   793篇
  2014年   943篇
  2013年   1437篇
  2012年   792篇
  2011年   949篇
  2010年   795篇
  2009年   1034篇
  2008年   1110篇
  2007年   1136篇
  2006年   1056篇
  2005年   989篇
  2004年   894篇
  2003年   840篇
  2002年   722篇
  2001年   659篇
  2000年   569篇
  1999年   559篇
  1998年   467篇
  1997年   517篇
  1996年   454篇
  1995年   407篇
  1994年   377篇
  1993年   373篇
  1992年   376篇
  1991年   299篇
  1990年   310篇
  1989年   276篇
  1988年   257篇
  1987年   215篇
  1986年   200篇
  1985年   259篇
  1984年   253篇
  1983年   169篇
  1982年   235篇
  1981年   166篇
  1980年   145篇
  1979年   95篇
  1978年   50篇
  1977年   41篇
  1976年   21篇
  1975年   19篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
101.
Photoinhibition of white clover seed germination at low water potential   总被引:1,自引:0,他引:1  
Photosensitivity of germination of white clover ( Trifolium repens L. cv. Podkowa) seeds was studied under water deficit (low water potential) conditions at 25°C. The seeds showed negative photoblastism, which was most pronounced at -0.03 MPa polyethylene glycol solution. Inhibition was observed at two different wavelength bands with maxima at 660 nm (R) and around 730 nm (FR). Red light acted identically to white light (maximum inhibition ca 50%). The effect of far-red illumination was less inhibitory (20–30%). The photoresponse required long illuminations (3 h exposures); saturation level was at 0.1 W m−2, independently of the light quality. White clover seed germination showed no reversibility of the effects of R and FR light. Prolonged illumination with R and FR increased the inhibition, and intermittent illumination had a higher effect than a continuous one. It was concluded that the photoinhibition of germination of seeds of Trifolium repens involves a reaction dependent on the rate of phytochrome interconversion, a property that is characteristic for the high irradiance reaction.  相似文献   
102.
Simultaneous measurements were taken of the electrical activity and the rate of respiration of thalli of Conocephalum conicum L. stimulated electrically and mechanically (by cutting). The measurements of the rate of respiration employed a modified Warburg apparatus for O2 consumption and an infra-red gas analyzer with computer recording and data processing for CO2 evolution. The action potential, produced by either a cut (a damaging stimulus) or an electrical stimulus (a non-damaging stimulus), caused a transient rise in the rate of respiration. The course of changes in the rate of respiration depends on the character of the excitation and the area of the thallus covered by it. If stimulation does not produce excitation, the increase in the rate of respiration does not take place, regardless of the magnitude and type of the stimulus applied.  相似文献   
103.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   
104.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   
105.
During ageing of the short-lived pollen grains of Cucurbita pepo L., water loss was examined in relation to viability using biophysical (1H-nuclear magnetic resonance, NMR) and cytological methods (fluorochromatic reaction test, freezefracture and scanning electron microscopy). A semi-logarithmic representation of the pollen weight loss demonstrated the complexity of the dehydration process. A the study of proton loss using 1H-NMR indicated that two major releases water of had taken place, each with different flux rates. Pulse 1H-NMR experiments showed the occurrene of non-exponential signal decay as a function of time, indicating the existence of different fractions of water in a pollen grain sample. These fractions leave the pollen grain at different times during pollen dehydration, and one of them (that of the so-called vital water) can be related to pollen viability. The quantity of protons giving a signal during pulse 1H-NMR experiments was very low when the pollen grains were judged to be dead according to the fluorochromatic test. Freeze-fracture replicas of these dead pollen grains (less than 25% water content) showed that the plasma membrane had become detached from the intine surface; this ultrastructural feature might therefore be involved in the loss of pollen viability.Abbreviations A initial amplitude of the NMR signal - A2 quantity of water charcterized by T2-2 - A5 quantity of water characterized by T2–5 - FCR fluorochromatic reaction - NMR nuclear magnetic resonance - T2 transverse relaxation time - T2-2 T2 measured with 2 ms between each pulse of radiofrequency - T2–5 T2 measured with 5 ms between each pulse of radiofrequency  相似文献   
106.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   
107.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   
108.
Summary Maize (Zea mays) leaf protoplasts were isolated from various leaves of two-week (4-leaf) seedlings and from sections of the third leaf blades. Microtubules (MTs) were visualized using immunofluorescence microscopy. Only freshly isolated protoplasts from the third and fourth leaf blades contained MTs, with protoplasts from the fourth leaf containing the most i.e. 13% of fourth-leaf protoplasts contained MTs. In general, protoplasts with fewer and smaller chloroplasts had more MTs. Initially 90–95% of protoplasts from basal portions of leaves had MTs but the percentage decreased slightly during culture particularly after 10 days. The antioxidant n-propyl gallate was beneficial in maintaining MT content. Few protoplasts from older sections intitially contained MTs but in all sections at least some protoplasts regained a significant MT content during culture (e.g., 10% of protoplast from the tip section possessed microtubules after 7 days of culture). Far fewer MTs were observed in individual leaf protoplasts than those isolated from suspension culture.Abbreviations BMS Black Mexican Sweet - MT microtubule - MtSB microtubule stabilizing buffer - PBS phosphate buffered saline  相似文献   
109.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   
110.
Diurnal water storage in the stems of Picea sitchensis (Bong.) Carr.   总被引:1,自引:1,他引:0  
Abstract. Two models of the relationship between diurnal variation in shoot water potential and transpiration in 14-year-old Picea sitchensis (Bong.) Carr. were compared. The first model was a physiologically based resistance-capacitance (R-C) analogue with its associated differential equations. The second was a non-physiological discrete-difference (D-D) or stochastic transfer function model. The RC model included only the effect of water storage in the phloem and bark while the D-D model implicity included all storage mechanisms. The R-C and D-D models explained similar fractions (62% and 68% respectively) of the variation in shoot water potential due to diurnal changes in transpiration rate. However, the D-D model had fewer parameters than the R-C model. The results from the D-D model showed that the resistance to flow from soil to shoots along the trunk, (RT), was 5 × 103 MPa kg-1s and the capacitance of the phloem and bark treated as a single store, (Cs), was 1.6 kg MPa-1. It is suggested that the resistance to flow into storage (Rs) is much greater than RT and can be disregarded. A non-linear version of the D-D model suggested [hat resistance to flow in the trunk increases with increasing transpiration rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号